Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.836
Filtrar
1.
Front Immunol ; 15: 1320444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605949

RESUMO

Enhanced interferon α (IFNα) production has been implicated in the pathogenesis of systemic lupus erythematosus (SLE). We previously reported IFNα production by monocytes upon activation of the stimulator of IFN genes (STING) pathway was enhanced in patients with SLE. We investigated the mechanism of enhanced IFNα production in SLE monocytes. Monocytes enriched from the peripheral blood of SLE patients and healthy controls (HC) were stimulated with 2'3'-cyclic GAMP (2'3'-cGAMP), a ligand of STING. IFNα positive/negative cells were FACS-sorted for RNA-sequencing analysis. Gene expression in untreated and 2'3'-cGAMP-stimulated SLE and HC monocytes was quantified by real-time PCR. The effect of GATA binding protein 4 (GATA4) on IFNα production was investigated by overexpressing GATA4 in monocytic U937 cells by vector transfection. Chromatin immunoprecipitation was performed to identify GATA4 binding target genes in U937 cells stimulated with 2'3'-cGAMP. Differentially expressed gene analysis of cGAS-STING stimulated SLE and HC monocytes revealed the enrichment of gene sets related to cellular senescence in SLE. CDKN2A, a marker gene of cellular senescence, was upregulated in SLE monocytes at steady state, and its expression was further enhanced upon STING stimulation. GATA4 expression was upregulated in IFNα-positive SLE monocytes. Overexpression of GATA4 enhanced IFNα production in U937 cells. GATA4 bound to the enhancer region of IFIT family genes and promoted the expressions of IFIT1, IFIT2, and IFIT3, which promote type I IFN induction. SLE monocytes with accelerated cellular senescence produced high levels of IFNα related to GATA4 expression upon activation of the cGAS-STING pathway.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Monócitos/metabolismo , Expressão Gênica , Interferon Tipo I/metabolismo , Interferon-alfa/metabolismo , Nucleotidiltransferases/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 465-473, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597437

RESUMO

OBJECTIVE: To explore the therapeutic mechanism of Jianpi Zishen (JPZS) granules for systemic lupus erythematosus(SLE) in light of podocyte autophagy regulation. METHODS: TCMSP, GeneCards, OMIM, and TTD databases were used to obtain the targets of JPZS granules, SLE, and podocyte autophagy. The protein-protein interaction network was constructed using Cytoscape, and the key active ingredients and targets were screened for molecular docking. In the clinical study, 46 patients with SLE were randomized into two groups to receive baseline treatment with prednisone acetate and mycophenolate mofetil (control group) and additional treatment with JPZS granules (observation group) for 12 weeks, with 10 healthy volunteers as the healthy control group. Urinary levels of nephrin and synaptopodin of the patients were detected with ELISA. Western blotting was performed to determine peripheral blood levels of p-JAK1/JAK1, p-STAT1/STAT1, LC3II/LC3I, and p62 proteins of the participants. RESULTS: Four key active ingredients and 5 core target genes (STAT1, PIK3CG, MAPK1, PRKCA, and CJA1) were obtained, and enrichment analysis identified the potentially involved signaling pathways including AGE-RAGE, JAK/STAT, EGFR, and PI3K/Akt. Molecular docking analysis showed that STAT1 was the most promising target protein with the highest binding activity, suggesting its role as an important mediator for signal transduction after JPZS granule treatment. In the 43 SLE patients available for analysis, treatment with JPZS granule significantly reduced serum levels of p-JAK1/JAK1, p-STAT1/STAT1, and LC3II/LC3I (P < 0.05 or 0.01), increased the protein level of P62 (P < 0.05), and reduced urinary levels of nephrin and synaptopodin (P < 0.05). CONCLUSION: The therapeutic effect of JPZS granules on SLE is mediated probably by coordinated actions of quercetin, kaempferol, ß-sitosterol, and isorhamnetin on their target gene STAT1 to inhibit the JAK/STAT pathway, thus suppressing autophagy and alleviating podocyte injuries in SLE.


Assuntos
Medicamentos de Ervas Chinesas , Lúpus Eritematoso Sistêmico , Podócitos , Humanos , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Janus Quinases/uso terapêutico , Transdução de Sinais , Podócitos/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Fatores de Transcrição STAT/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Autofagia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542277

RESUMO

Mitochondria are eukaryotic cellular organelles that function in energy metabolism, ROS production, and programmed cell death. Cutaneous epithelial and hair follicle dermal papilla cells are energy-rich cells that thereby may be affected by mitochondrial dysfunction and DNA mutation accumulation. In this review, we aimed to summarize the medical literature assessing dermatologic conditions and outcomes associated with mitochondrial dysfunction. A search of PubMed and Embase was performed with subsequent handsearching to retrieve additional relevant articles. Mitochondrial DNA (mtDNA) deletions, mutation accumulation, and damage are associated with phenotypic signs of cutaneous aging, hair loss, and impaired wound healing. In addition, several dermatologic conditions are associated with aberrant mitochondrial activity, such as systemic lupus erythematosus, psoriasis, vitiligo, and atopic dermatitis. Mouse model studies have better established causality between mitochondrial damage and dermatologic outcomes, with some depicting reversibility upon restoration of mitochondrial function. Mitochondrial function mediates a variety of dermatologic conditions, and mitochondrial components may be a promising target for therapeutic strategies.


Assuntos
Lúpus Eritematoso Sistêmico , Doenças Mitocondriais , Psoríase , Animais , Camundongos , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Psoríase/metabolismo , Doenças Mitocondriais/metabolismo
4.
Front Immunol ; 15: 1327437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550577

RESUMO

Introduction: T follicular (TFH) and peripheral helper (TPH) cells have been increasingly recognized as a pathogenic subset of CD4 T cells in systemic lupus erythematosus (SLE). The SLAM Associated Protein (SAP) regulates TFH and TPH function by binding to the co-stimulatory signaling lymphocyte activation molecule family (SLAMF) receptors that mediate T cell - B cell interactions. SAP and SLAMF are critical for TPH-dependent B cell maturation into autoantibody-producing plasma cells that characterize SLE pathogenesis. We hypothesized that SAP-expressing TPH cells are involved in the pathogenesis of lupus nephritis (LN). Methods: Peripheral blood mononuclear cells (PBMC) were isolated using density gradient separation from whole blood. Cells were stained for cell surface markers, followed by permeabilization and staining of intracellular SAP for spectral flow cytometry analysis. We also analyzed SAP expression from renal infiltrating LN T cells using the available single-cell RNA sequencing (scRNA seq) Accelerated Medicines Partnership (AMP) SLE dataset. Results: PBMC from 30 patients with SLE (34 ± 10 years old, 83% female), including 10 patients with LN, were analyzed. We found an increase in total SAP-positive CD4 and CD8 T cells in SLE compared with controls (55.5 ± 2.6 vs. 41.3 ± 3.4, p=0.007, and 52.5 ± 3.0 vs. 39.2 ± 2.8, p=0.007 respectively). In CD4 T cells, the highest SAP expression was in the TPH subset. The frequency of SAP+TPH in circulation correlated with disease activity; SLE patients with renal disease had higher levels of circulating SAP+TPH that remained significant after adjusting for age, sex, race, low complements, and elevated anti-dsDNA (p=0.014). scRNA-seq data of renal infiltrating T cells in LN identified SAP expression to localize to the TFH-like CD4 cluster and GZMK+ CD8 cluster. Increased SAP expression in LN was associated with the differential expression of SLAMF3 and SLAMF7 and granzyme K and EOMES. The existence of two predominant SAP-expressing subsets, the TFH-like CD4 T cells, and GZMK+ effector CD8 T cells, was verified using scRNA-seq data from a human transcriptomic atlas of fifteen major organs. Conclusion: The expansion of SAP-expressing T helper cells was associated with LN in our cohort and verified using scRNA-seq data of renal infiltrating T cells. Improved SLAM and SAP signaling understanding can identify new therapeutic targets in LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Nefrite Lúpica/metabolismo , Leucócitos Mononucleares/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
5.
Front Immunol ; 15: 1339250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524128

RESUMO

Neutrophil dysregulation, particularly of a low-density subset, is associated with systemic lupus erythematosus (SLE); however, the exact role of normal-density neutrophils in SLE remains unknown. This study compares activation and functional phenotypes of neutrophils from SLE patients and healthy controls to determine potential contributions to SLE pathogenesis. Surface activation markers and release of neutrophil extracellular traps (NETs), granule proteins, and cytokines/chemokines were measured in resting and stimulated neutrophils from SLE patients (n=19) and healthy controls (n=10). Select miRNA and mRNA involved in neutrophil development and function were also measured. Resting SLE neutrophils exhibited fewer activation markers compared to control neutrophils, and activation markers were associated with different plasma cytokines/chemokines in SLE patients compared to healthy controls. However, activation markers increased similarly in SLE and control neutrophils following stimulation with a TLR7/8 agonist, neutrophil growth factors, and bacterial mimic. At the resting state, SLE neutrophils produced significantly more CXCL10 (IP-10), with trends toward other increased cytokines/chemokines. Following stimulation, SLE neutrophils produced fewer NETs and proinflammatory cytokines compared to control neutrophils but more MMP-8. In addition, SLE neutrophils expressed less miR130a, miR132, miR27a, and miR223. In conclusion, SLE neutrophils exhibit distinct functional responses compared to control neutrophils. These functional differences may result from differential gene expression via miRNAs. Furthermore, the differences in functional phenotype of SLE neutrophils suggest that they may contribute to SLE differently dependent on the inflammatory milieu.


Assuntos
Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Neutrófilos/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Armadilhas Extracelulares/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo
6.
Cell Mol Life Sci ; 81(1): 110, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429401

RESUMO

Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.


Assuntos
Calgranulina A , Calgranulina B , Lúpus Eritematoso Sistêmico , Células Supressoras Mieloides , Animais , Camundongos , Células Dendríticas/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos MRL lpr , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo
7.
Autoimmunity ; 57(1): 2319207, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38404066

RESUMO

Objective: Todetect the abnormal distribution of B-lymphocytes between peripheral and bone marrow (BM) compartments and explore the mechanism of abnormal chemotaxis of B-lymphocytes in lupus subjects. Methods: The proportions of CXC chemokine receptor (CXCR)4+ B cells and CFDA-labeled MRL/lpr-derived B cells were detected by flow cytometry. The levels of CXC chemokine ligand (CXCL)12in peripheral blood (PB)were measured by ELISA. The migrated B cells to osteoblasts (OBs) was measured by transwell migration assay. The relative spatial position of B cells, OBs and CXCL12 was presented by Immunofluorescence assay. Results: Firstly, we found that the percentage of CXCR4+ B cells was lower in PB and higher in the BM from both MRL/lpr mice and patientswith Systemic lupus erythematosus (SLE). Secondly, OBs from MRL/lpr mice produced more CXCL12 than that from C57BL/6 mice. Besides, MRL/lpr-derived OBs demonstrated more potent chemotactic ability toward B-lymphocytes than control OBs by vitro an vivo. Additionally, more B-lymphocytes were found to co-localize with OBs within the periosteal zone of bone in MRL/lpr mice. Lastly, the percentages of CXCR4+B cells were found to be negatively correlated with serum Immunoglobulin (Ig) G concentration, moreover, BM CXCL12 levels were found to be positively correlated with SLE disease activity index Score and negatively correlated with serum Complement3 (C3) concentration. Conclusions: our results indicated that there is a shifted distribution of B-lymphocytes between BM and peripheral compartments in both SLE patients and MRL/lpr mice. Besides, the up-regulated levels of CXCL12 in OBs was indicated to contribute to the enhanced chemotactic migration and anchorage of B-lymphocytes to OBs.


Assuntos
Medula Óssea , Quimiocina CXCL12 , Lúpus Eritematoso Sistêmico , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Quimiocina CXCL12/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Osteoblastos/metabolismo
8.
EMBO Mol Med ; 16(3): 547-574, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316934

RESUMO

Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.


Assuntos
Células Caliciformes , Lúpus Eritematoso Sistêmico , Humanos , Células Caliciformes/patologia , Intestinos/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Diferenciação Celular , Organoides
9.
Front Immunol ; 15: 1355845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390327

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.


Assuntos
Vesículas Extracelulares , Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/metabolismo , Células-Tronco Mesenquimais/metabolismo
10.
Immunol Lett ; 266: 106841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331259

RESUMO

Macrophages must remove apoptotic cells to shield tissues from the deleterious components of dying cells. The development of chronic inflammation and autoimmune symptoms in systemic lupus is influenced by a deficiency in phagocytosis of apoptotic cells but the underlying mechanism is still unknown. Modifications in monocyte/macrophage phenotype brought on by an increase in their inflammatory phenotype would cause them to decrease the expression of CPT1a, which would reduce their ability to phagocytose, aggravating kidney damage in lupus nephritis. We aim to demonstrate that the deficiency of CPT1A in the immunological system determines lupus. For this purpose, we will monitor CPT1a expression in blood monocytes and phagocytosis and CPT1a expression of macrophages isolated from kidneys and the inflammatory state in kidneys in two experimental models of lupus nephritis such as lupus induced pristane model and in the OVA-IC in vivo model. Additionally, we will test if reestablishing CPT1a expression in tissue macrophages restores the lost phagocytic function. We evidenced that blood monocytes and macrophages isolated from kidneys in the two in vivo models have a reduced expression of CPT1a and a reduced phagocytosis. Phagocytosis could be restored only if macrophage administration leads to an increase in CPT1a expression in kidney macrophages. A new cell therapy to reduce kidney nephritis in lupus could be developed based on these results.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Monócitos , Nefrite Lúpica/metabolismo , Fagocitose , Macrófagos , Inflamação/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo
11.
Arthritis Res Ther ; 26(1): 7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167491

RESUMO

BACKGROUND: NAT10 is the firstly recognized RNA acetyltransferase that participates in multiple cellular biological processes and human disease. However, the role of N-acetyltransferase 10 (NAT10) in ankylosing spondylitis (AS) is still poorly elaborated. METHODS: Fifty-six patients with New-Onset AS, 52 healthy controls (HC), 20 patients with rheumatoid arthritis (RA) and 16 patients with systemic lupus erythematosus (SLE) were recruited from The First Afliated Hospital of Nanchang University, and their clinical characteristics were recorded. The expression level of NAT10 in peripheral blood mononuclear cell (PBMC) was examined using reverse transcription-quantitative PCR analysis. The correlations between the expression level of NAT10 in the New-Onset AS patients and disease activity of AS were examined, and receiver operating characteristic (ROC) curves were built to evaluate predictive value in AS. Univariate analysis and multivariate regression analysis were used to analyze the risk factors and construct predictive model. RESULTS: The mRNA expressions of NAT10 in PBMC from new-onset AS patients were significantly low and there were negative correlation between mRNA NAT10 and ASDAS-CRP, BASDIA in new-onset AS patients. ROC analysis suggested that mRNA NAT10 has value in distinguishing new-onset AS patients from HC, RA and SLE. Furthermore, a novel predictive model based on mRNA NAT10 and neutrophil percentages (N%) was constructed for distinguishing new-onset AS patients from HC (AUC = 0.880, sensitivity = 84.62%, specificity = 76.92%) and the predictive model correlated with the activity of new-onset AS. Furthermore, the predictive model could distinguish new-onset AS patients from RA and SLE (AUC = 0.661, sensitivity = 90.38%, specificity = 47.22%). Moreover, the potential predictive value of the combination of predictive model-HLA-B27 for AS vs. HC with a sensitivity of 92.86% (39/42), a specificity of 100.00% (52/52) and an accuracy of 96.81% (91/94) was superior to that of HLA-B27, which in turn had a sensitivity of 84.44% (38/45), a specificity of 100.00% (52/52) and an accuracy of 92.78% (90/97). CONCLUSION: The present study suggested that the decreased mRNA NAT10 may play a role in AS pathogenesis and predictive model based on mRNA NAT10 and N% act as bioindicator for forecast and progression of diseases.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Espondilite Anquilosante , Humanos , Espondilite Anquilosante/diagnóstico , Espondilite Anquilosante/genética , Leucócitos Mononucleares/metabolismo , Antígeno HLA-B27 , Relevância Clínica , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , RNA Mensageiro/metabolismo , Acetiltransferases/metabolismo , Acetiltransferases N-Terminal/metabolismo
12.
Rheumatology (Oxford) ; 63(1): 242-250, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37184875

RESUMO

OBJECTIVES: Blood dendritic cell antigen 2 (BDCA2) is exclusively expressed on plasmacytoid dendritic cells (pDCs) whose uncontrolled production of type I IFN (IFN-I) is crucial in pathogenesis of SLE and other autoimmune diseases. Although anti-BDCA2 antibody therapy reduced disease activity in SLE patients, its clinical efficacy needs further improvement. We developed a novel glucocorticoid receptor agonist and used it as a payload to conjugate with an anti-BDCA2 antibody to form an BDCA2 antibody-drug conjugate (BDCA2-ADC). The activation of BDCA2-ADC was evaluated in vitro. METHODS: Inhibitory activity of BDCA2-ADC was evaluated in peripheral blood mononuclear cells or in purified pDCs under ex vivo toll-like receptor agonistic stimulation. The global gene regulation in purified pDCs was analysed by RNA-seq. The antigen-dependent payload delivery was measured by reporter assay. RESULTS: The BDCA2-ADC molecule causes total suppression of IFNα production and broader inhibition of inflammatory cytokine production compared with the parental antibody in human pDCs. Global gene expression analysis confirmed that the payload and antibody acted synergistically to regulate both type I IFN signature genes and glucocorticoid responsive genes in pDCs. CONCLUSION: Taken together, these data suggest dual mechanisms of BDCA2-ADC on pDCs and the potential for BDCA2-ADC to be the first ADC treatment for SLE in the world and a better treatment option than anti-BDCA2 antibody for SLE patients.


Assuntos
Imunoconjugados , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Leucócitos Mononucleares/metabolismo , Glucocorticoides/farmacologia , Imunoconjugados/farmacologia , Imunoconjugados/metabolismo , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Anticorpos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo
13.
Pediatr Nephrol ; 39(4): 1135-1142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37889280

RESUMO

BACKGROUND: Vitamin C is a potent scavenger of reactive oxygen species, which induce neutrophil extracellular trap (NET) formation. NETs are a major source of autoantigens and are involved in systemic lupus erythematosus (SLE) pathogenesis. We determined vitamin C status and evaluated NET formation and inflammatory cytokines in children with lupus nephritis. METHODS: Serum vitamin C was measured in 46 patients (82.6% females, mean age 14.5 ± 0.3 years). Vitamin C levels < 0.3 mg/dL indicated vitamin C deficiency. Patients were divided into two groups according to serum vitamin C levels: normal and low (< 0.3 mg/dL). We compared NET formation and levels of SLE-related cytokines, including interleukin (IL)-8, IL-10, and tumor necrosis factor-α (TNF-α), between groups. NET formation was determined through measurement of serum citrullinated histone 3 levels and mRNA expression of peptidyl arginine deiminase-4 and assessment of the percentage of neutrophils with NETs by immunofluorescence. RESULTS: Nine patients (19.6%) had vitamin C deficiency. Kidney pathology assessment at disease onset revealed that histological activity index and number of kidney biopsies containing crescentic glomeruli were higher in vitamin C-deficient patients, but chronicity index was not. NET formation and serum IL-8 were more prominent in vitamin C-deficient patients. Serum IL-8 levels were 12.9 ± 5.2 pg/mL in low vitamin C group and 5.2 ± 0.9 pg/mL in normal vitamin C group (p = 0.03). Serum IL-10 and TNF-α were similar between groups. CONCLUSIONS: Our study demonstrated correlation among vitamin C deficiency, increased NET formation, and IL-8 upregulation in children with lupus nephritis. A prospective study is required to evaluate cause‒effect relationships of vitamin C status, NET formation and IL-8 expression.


Assuntos
Deficiência de Ácido Ascórbico , Armadilhas Extracelulares , Interleucina-8 , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Adolescente , Criança , Feminino , Humanos , Masculino , Ácido Ascórbico , Deficiência de Ácido Ascórbico/complicações , Citocinas/metabolismo , Armadilhas Extracelulares/metabolismo , Interleucina-10/metabolismo , Interleucina-8/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Lupus ; 33(2): 166-171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073556

RESUMO

BACKGROUND: Despite significant progress in understanding the mechanisms underlying hippocampal involvement in neuropsychiatric systemic lupus erythematosus (NPSLE), our understanding of how neuroinflammation affects the brain neurotransmitter systems is limited. To date, few studies have investigated the role of neurotransmitters in pathogenesis of NPSLE with contradictory results. METHODS: Hippocampal tissue from NZB/W-F1 lupus-prone mice and age-matched control strains were dissected in both pre-nephritic (3-month-old) and nephritic (6-month-old) stages. High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin (5-HT), dopamine (DA), and their metabolites 5-HIAA and DOPAC, respectively, in mouse hippocampi. RESULTS: Lupus mice exhibit decreased levels of serotonin at the early stages of the disease, along with intact levels of its metabolite 5-HIAA. The 5-HT turnover ratio (5-HIAA/5-HT ratio) was increased in the hippocampus of lupus mice at pre-nephritic stage suggesting that low hippocampal serotonin levels in lupus are attributed to decreased serotonin synthesis. Both DA and DOPAC levels remained unaffected in lupus hippocampus at both early and late stages. CONCLUSION: Impaired hippocampal serotonin synthesis in the hippocampus of lupus-prone mice represents an early neuropsychiatric event. These findings may have important implications for the use of symptomatic therapy in diffuse NPSLE.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Camundongos , Animais , Serotonina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Dopamina/metabolismo , Hipocampo , Vasculite Associada ao Lúpus do Sistema Nervoso Central/metabolismo
15.
NPJ Syst Biol Appl ; 9(1): 62, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102122

RESUMO

Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share clinical as well as pathogenic similarities. Although previous studies suggest various abnormalities in different immune cell compartments, dedicated cell-type specific transcriptomic signatures are often masked by patient heterogeneity. Here, we performed transcriptional profiling of isolated CD4, CD8, CD16 and CD19 lymphocytes from pSS and SLE patients upon T cell stimulation, in addition to a steady-state condition directly after blood drawing, in total comprising 581 sequencing samples. T cell stimulation, which induced a pronounced inflammatory response in all four cell types, gave rise to substantial re-modulation of lymphocyte subsets in the two autoimmune diseases compared to healthy controls, far exceeding the transcriptomic differences detected at steady-state. In particular, we detected cell-type and disease-specific down-regulation of a range of pro-inflammatory cytokine and chemokine pathways. Such differences between SLE and pSS patients are instrumental for selective immune targeting by future therapies.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Linfócitos T/metabolismo , Regulação para Baixo/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo
16.
Funct Integr Genomics ; 23(4): 337, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971684

RESUMO

Although vascular dementia (VD) and systemic lupus erythematosus (SLE) may share immune-mediated pathophysiologic processes, the underlying mechanisms are unclear. This study investigated shared gene signatures in SLE versus VD, as well as their potential molecular mechanisms. Bulk RNA sequencing (RNAseq) and single-cell or single-nucleus RNAseq (sc/snRNAseq) datasets from SLE blood samples and VD brain samples were obtained from Gene Expression Omnibus. The identification of genes associated with both SLE and VD was performed using the weighted gene co-expression network analysis (WGCNA) and machine learning algorithms. For the sc/snRNAseq data, an unbiased clustering pipeline based on Seurat and CellChat was used to determine the cellular landscape profile and examine intracellular communication, respectively. The results were subsequently validated using a mice model of SLE with cognitive dysfunction (female MRL/lpr mice). WGCNA and machine learning identified C1QA, LY96, CD163, and MS4A4A as key genes for SLE and VD. sc/snRNAseq analyses revealed that CD163 and MS4A4A were upregulated in mononuclear phagocytes (MPs) from SLE and VD samples and were associated with monocyte-macrophage differentiation. Intriguingly, LGALS9-associated molecular pathway, as the only signaling pathway common between SLE and VD via CellChat analysis, exhibited significant upregulation in cortical microglia of MRL/lpr mice. Our analyses identified C1QA, LY96, CD163, and MS4A4A as potential biomarkers for SLE and VD. Moreover, the upregulation of CD163/MS4A4A and activation of LGALS9 signaling in MPs may contribute to the pathogenesis of VD with SLE. These findings offer novel insight into the mechanisms underlying VD in SLE patients.


Assuntos
Demência Vascular , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Feminino , Demência Vascular/genética , Camundongos Endogâmicos MRL lpr , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Perfilação da Expressão Gênica , Diferenciação Celular
17.
Auton Neurosci ; 250: 103129, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37950930

RESUMO

Pharmacological stimulation of the vagus nerve has been shown to suppress inflammation and reduce blood pressure in a murine model of systemic lupus erythematosus (SLE) that is characterized by hypertension, inflammation, renal injury and dysautonomia. The present study aims to directly stimulate vagal nerves at the level of the dorsal motor nucleus of the vagus (DMV) using designer receptors exclusively activated by designer drugs (DREADDs) to determine if there is similar protection and confirm mechanism. Female NZBWF1/J (SLE) mice and NZW/LacJ mice (controls, labeled as NZW throughout) received bilateral microinjections of pAAV-hSyn-hM3D(Gq)-mCherry or control virus into the DMV at 31 weeks of age. After two weeks of recovery and viral transfection, the DREADD agonist clozapine-N-oxide (CNO; 3 mg/kg) was injected subcutaneously for an additional 14 days. At 35 weeks, mean arterial pressure (MAP; mmHg) was increased in SLE mice compared to NZW mice, but selective activation of DMV neurons did not significantly alter MAP in either group. SLE mice had higher indices of renal injury including albumin excretion rate (µg/day), glomerulosclerosis index, interstitial fibrosis, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) compared to NZW mice. Selective DMV neuronal activation reduced albumin excretion rate, glomerulosclerosis, interstitial fibrosis, and NGAL in SLE mice but not NZW mice. Together, these data indicate that selective activation of neurons within the DMV by DREADD protects the kidney suggesting an important role of vagus-mediated pathways in the progression of renal injury in SLE.


Assuntos
Nefropatias , Lúpus Eritematoso Sistêmico , Camundongos , Feminino , Animais , Lipocalina-2/metabolismo , Rim , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Inflamação/metabolismo , Nervo Vago , Albuminas/metabolismo , Fibrose
18.
Sci Rep ; 13(1): 17992, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865713

RESUMO

A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Citrulinação , Artrite Reumatoide/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Autoimunidade/genética , Armadilhas Extracelulares/metabolismo
19.
Cell Biol Toxicol ; 39(6): 3287-3304, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804401

RESUMO

V-domain immunoglobulin suppressor of T-cell activation (VISTA), an important negative checkpoint protein, participates in immunoregulation. Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients exhibit high levels of autoantibodies and multi-organ tissue injury, primarily involving the kidney and skin. In wild-type (WT) mice and Vsir-/- mice with pristane-induced lupus-like disease, we found that VISTA deficiency exacerbated the lupus-like disease in mice, possibly through aberrant activation of type I interferon (IFN-I) signaling, CD4+ T cell, and noncanonical nuclear factor-κB (NF-κB) pathway. Surface plasmon resonance results showed that imatinib, an FDA-approved tyrosine kinase inhibitor, may have a high affinity for human VISTA-ECD with a KD value of 0.2009 µM. The biological activities of imatinib and VISTA agonist M351-0056 were studied in monocytes and T cells and in lupus-like disease murine model of chronic graft-versus-host disease (cGVHD) and lupus-prone MRL/lpr mice. VISTA small-molecule agonist reduced the cytokine production of peripheral blood mononuclear cells (PBMCs) and Jurkat cells and inhibited PBMCs proliferation. Moreover, they attenuated the levels of autoantibodies, renal injury, inflammatory cytokines, chemokines, and immune cell expansion in the cGVHD mouse model and MRL/lpr mice. Our findings also demonstrated that VISTA small-molecule agonist ameliorated the development of SLE through improving aberrantly activated IFN-I signaling and noncanonical NF-κB pathway. In conclusion, VISTA has a protective effect on the development and progression of SLE. VISTA agonist M351-0056 and imatinib have been firstly demonstrated to attenuate SLE, suggesting interventions to enhance VISTA function may be effective in treating SLE. VISTA deficiency exacerbates pristane-induced lupus-like disease in mice by promoting activation of the IFN-I and noncanonical NF-κB pathway. Imatinib was screened as a small-molecule VISTA agonist by molecular docking, SPR, and cellular level experiments. VISTA agonists (M351-0056 and imatinib) alleviated lupus-like disease progression in the cGVHD mouse model and MRL/lpr mice by inhibiting activation of IFN-I and noncanonical NF-κB pathway.


Assuntos
Lúpus Eritematoso Sistêmico , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Mesilato de Imatinib/farmacologia , Interferons , Leucócitos Mononucleares , Simulação de Acoplamento Molecular , Camundongos Endogâmicos MRL lpr , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Citocinas/metabolismo , Autoanticorpos , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...